The Fout research program focuses on the synthesis of ligand architectures that can support transition metal complexes capable of mediating unusual transformations for biological, environmental and energy problems. Our main curiosities stem from catalytic, synthetic inorganic, and bioinorganic chemistry. The group is interested in using synthesis, reactivity, and mechanistic studies to understand the activation of small molecules by low-coordinate transition metal-ligand multiple bonds.


BIOINORGANIC.

We are interested in developing synthetic systems containing structural and functional motifs found within the particular architecture of metalloproteins. Our approach to facilitate multi-electron transformations is to use a ligand scaffold with two key features: (1) a hydrogen-bonding network to stabilize reactive intermediates and channel substrates toward the metal center; (2) a redox active phenol or tyrosine to mediate multi-electron transformations. The design of new synthetic systems that are tailored to particular functions will provide insight into the reactivity of targeted metalloproteins.


SYNTHETIC INORGANIC AND CATALYSIS.

First-row transition metals are more abundant, less toxic and more cost efficient than the second and third-row congeners. We are interested in using first-row transition metal complexes in both stoichiometric and catalytic transformations to effect the reactivity scope currently observed by their heavier counterparts. Using strong-field ligands facilitates desired chemical reactivity by suppressing one electron pathways, resulting in new catalysts for two electron bond-making and bond-breaking processes, e.g. oxidative addition and reductive elimination. Iron, cobalt and nickel catalysts are primary targets for their ability to parallel second and third-row transition metal catalysts. A related topic of interest involves using sterically encumbering ligands to target high-valent coordinatively unsaturated metal complexes for the intermolecular C-H bond activation of alkenes or arenes.

Students in the group will develop a strong foundation in synthetic organometallic chemistry while developing familiarity with spectroscopic techniques including multinuclear NMR, electron paramagnetic resonance, magnetometry, X-ray crystallography, IR, UV-vis, Mössbauer, and electrochemistry.